The Effect of High-Temperature Water Vapour on Degradation and Failure of Hot Section Components of Gas Turbine Engines

Author:

Chen Kuiying,Seo Dongyi,Canteenwalla Pervez

Abstract

For the past decade, the aviation industry has been adopting sustainable aviation fuels (SAF) for use in aircraft to reduce the impact of aviation on climate change. Also, some nations look to SAF as an option for energy security for their military fleets. Understanding the critical impact of alternative fuel sources on hardware will provide the gas turbine industry with strategic options in sustainability and maintainability of the existing and new fleets. The alternative fuels with high hydrogen/carbon ratio (H/C) (such as synthetic paraffinic kerosenes (SPK)) could produce more water vapour content than the conventional jet fuels upon combustion, and this increased water vapour level could exert a significant impact over the long-term durability on hot section components such as the substrate blades, oxidation resistant coatings, thermal barrier coatings (TBCs), environmental barrier coatings (EBCs), resulting in an accelerated degradation of the turbine components. The possible detrimental effect of high-temperature water vapour on degradation and lifespan of hot section components was examined. Examples were specifically given on degradation and spallation of thermally grown oxides (TGO), formation of non-protective oxides and ceramics topcoats in TBCs. Results show that water vapour can lead to volatilization of TGO (Al2O3), and is responsible for the formation of non-protective oxides in both Pt-modified β-NiAl and MCrAlY coatings, leading to their early spallation. However, water vapour does not appear to directly affect the ceramic topcoat of the TBC. For EBCs coated on SiC-based substrates, the substrate recession via silica (TGO) volatilization was reviewed. These EBCs were observed undergoing degradation in highly hostile environments, e.g., constantly operating under high temperatures, pressures, and velocities condition in the presence of water vapour steam. The review intends to provide a perspective of high-temperature water vapour effect on the EBCs’ topcoat properties such as durability, degradation, crack nucleation and crack growth, and possible guidance for mitigating these degradation effects.

Funder

National Research Council Canada

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3