Synthesis and Characterization of Highly Photocatalytic Active Ce and Cu Co-Doped Novel Spray Pyrolysis Developed MoO3 Films for Photocatalytic Degradation of Eosin-Y Dye

Author:

Kamoun OlfaORCID,Gassoumi Abdelaziz,Shkir Mohd.ORCID,Gorji Nima E.ORCID,Turki-Kamoun Najoua

Abstract

The current work deals with the fabrication of novel MoO3 nanostructured films with Ce and Cu co-doping through the spray pyrolysis route on a glass substrate maintained at 460 °C for the first time. The phase of developed films was approved by an X-ray diffraction study, and the crystallite size was determined between 82 and 92 nm. The optical transmission of the developed films was noticed to be reduced with doping and found between 45 and 90% for all films, and the absorption edge shifted to a higher wavelength with doping. The optical energy gap of the fabricated films was found to be reduced from 3.85 to 3.28 eV with doping. The developed films were used to degrade the harmful Eosin-Y dye under UV light. The system with 2% Ce and 1% Cu-doped MoO3 turned out to be the most effective catalyst for photodegradation of the dye in a period of 3H and almost degrade it. Hence, the MoO3 films prepared with 2% Ce and 1% Cu will be highly applicable as photocatalysts for the removal of hazardous dye from wastewater.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3