Fabrication of Cr2AlB2 and Cr4AlB4 MAB Phase Coatings by Magnetron Sputtering and Post-Annealing

Author:

Jia Ke1,Wang Guojing12ORCID,Lv Shasha3,Li Yan14,Du Shengjie3,Li Zhengcao1

Affiliation:

1. State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

2. School of Materials and Energy, Lanzhou University, Lanzhou 730000, China

3. Key Laboratory of Beam Technology (MOE), College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China

4. Department of Engineering Physics, Tsinghua University, Beijing 100084, China

Abstract

Cr2AlB2 and Cr4AlB4 are members of the MAB phases that exhibit unique properties of both metals and ceramics. However, despite these unique characteristics, Cr2AlB2 and Cr4AlB4 phase coatings have not been widely investigated. In this study, Cr2AlB2 and Cr4AlB4 MAB phase coatings were fabricated by magnetron sputtering at room temperature and post-annealing. A composite target, consisting of a phase-pure disc-shaped CrB target overlapped by uniformly dispersed fan-shaped Al slices, was placed parallel to the substrates. The Al content of the coatings was adjusted by altering the areal proportion of the Al slices. MAB phases have crystallized upon post-annealing the as-deposited coatings on Al2O3(0001) substrates in Ar. The phase compositions and morphologies of the crystalline coatings were found to be dependent on the Al content and the annealing temperature. As-deposited coatings with a Cr:Al:B ratio close to 2:1:2 could crystallize as pure and dense Cr2AlB2 phases within the temperature range of 650–800 °C; higher annealing temperatures resulted in the decomposition of Cr2AlB2, while crystallization at lower temperatures was not evident from X-ray diffraction. As-deposited coatings with a Cr:Al:B ratio close to 3:1:3, despite containing a relatively higher Al content than required by the stoichiometry of Cr4AlB4, exhibited insufficient crystallization of Cr4AlB4 with unknown phases below 840 °C. Higher annealing temperatures resulted in the coexistence of Cr4AlB4 and CrB, indicating that achieving phase-pure and well-crystallized Cr4AlB4 coatings proved challenging, possibly due to the inevitable loss of Al during annealing. The configuration of the composite target and the substrates provides a promising strategy for fabricating phase-pure and dense Cr2AlB2 coatings.

Funder

National Natural Science Foundation of China

State Key Laboratory of New Ceramics and Fine Processing Tsinghua University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3