Immobilized Nano-TiO2 Photocatalysts for the Degradation of Three Organic Dyes in Single and Multi-Dye Solutions

Author:

Bellè UmbertoORCID,Pelizzari Filippo,Lucotti Andrea,Castiglioni Chiara,Ormellese MarcoORCID,Pedeferri MariaPiaORCID,Diamanti Maria VittoriaORCID

Abstract

Heterogeneous photocatalysis with titanium dioxide (TiO2) is considered one of the most promising Advanced Oxidation Processes (AOPs). In order to solve issues related to catalyst recovery and possible agglomeration, which are typical of catalysts in nanoparticle form, self-organized nanotubular TiO2 films directly immobilized on a metal substrate can be produced through anodization. In this study, a nanotubular anodic oxide was tested in the degradation of three organic dyes, namely Direct Red 80, Methylene Blue, and Rhodamine B, in single, binary, and ternary mixtures, to simulate industrial effluents with the co-presence of multiple dyes. To better understand the dyes’ behavior and possible interaction effects, spectrophotometry was used to analyze the degradation of each dye in the mixture. The zero-crossing first-order derivative approach and double divisor ratio spectra derivative method were used for the analysis of binary and ternary mixtures, respectively, to overcome quantification problems due to spectra overlapping. The photocatalytic system demonstrated good efficiency, supporting the use of nanotubular TiO2 as a photocatalyst for dye mixtures. Moreover, the interaction among dyes can actually affect, both positively and negatively, photodegradation kinetics, posing an issue in understanding the actual efficiency of the purification process as a function of the effluent composition.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3