Deformation Mechanisms of NiP/Ni Composite Coatings on Ductile Substrates

Author:

Zhang Zhendi,Xu Hang,Zhou Xiaoye,Guo Tao,Pang Xiaolu,Volinsky Alex A.ORCID

Abstract

NiP/Ni composite coatings with different thicknesses were prepared on coarse-grained Ni substrates by electrodeposition. The tensile tests show that compared with the substrate, the toughness and strength of the samples with multilayer composite coatings are greatly improved. The uniform elongation is increased from 24% to 43%, and the yield strength is increased from 108 to 172 MPa. In the deformation process, the geometrically necessary dislocations accumulate, resulting in long-range back stress, leading to strain hardening, showing synergistic strength and ductility. The mechanical properties of composite coatings are strongly affected by the layer thickness. Molecular dynamics studies show that there is a more uniform distribution of the shear strain in thinner coatings, and the propagation of shear transformation zones (STZs) is restrained, preventing the formation of a large shear band. With the decrease of thickness, the deformation of the NiP layer changes from shear fracture to the coexistence of uniform deformation and shear deformation. The interface resistance of the multilayer structure increases the resistance of crack propagation and alleviates the effects of NiP layer cracking on substrate cracking. Multilayer amorphous/crystalline coatings therefore may increase the toughness of the Ni substrate.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3