Affiliation:
1. China Huaneng Clean Energy Research Institute, Beijing 102209, China
2. Huaneng Renewables Corporation Limited, Beijing 100036, China
3. College of Engineering, Northeast Agriculture University, Harbin 150030, China
Abstract
In cold areas, wind turbines face ice risk. The ice accretion on the blade surface will reduce the output power of wind turbines. To explore the effect of blade material on icing distribution, the blades of aluminum and carbon fiber-reinforced polymer (CFRP) were made, and the icing wind tunnel tests were carried out. The icing test is conducted under three icing times (2 min, 4 min, and 6 min) and three ambient temperatures (−5 °C, −10 °C, and −15 °C). The experimental results show that the icing time and ambient temperature are key factors in icing distribution. When the icing time increases, the average thickness of ice on the blade surface increases, and the airfoil profile of the blade changes significantly. When the ambient temperature decreases, the average thickness of ice on the blade surface increases, and the ice type changes from glaze ice to rime ice. The effect of blade material on the icing distribution is significantly affected by ambient temperature.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献