Ag Nanoislands Modified Carbon Fiber Nanostructure: A Versatile and Ultrasensitive Surface-Enhanced Raman Scattering Platform for Antiepileptic Drug Detection

Author:

Shi Guochao,Han Xue,Gu Jungai,Yuan Wenzhi,Li Kuihua,Wang LiyongORCID,Han Wei,Gu Jianjun

Abstract

A high-efficiency surface-enhanced Raman scattering (SERS) detection method with ultra-high sensitivity has been widely applied in drug component detection to optimize the product quality verification standards. Herein, a controllable strategy of sputtering Ag nanoislands on carbon fiber (C-fiber) via magnetron sputtering technology was proposed to fabricate a versatile Ag-C-fiber SERS active substrate. A wide range of multi-level electromagnetic enhancement “hot spots” distributed on Ag-C-fiber nanostructures can efficiently amplify Raman signals and the experimental enhancement factor (EEF) value was 3.871 × 106. Furthermore, substantial “hot spots” of large-scale distribution guaranteed the superior reproducibility of Raman signal with relative standard deviation (RSD) values less than 12.97%. Limit of detection (LOD) results indicated that when crystal violet (CV) is employed as probe molecule, the LOD was located at 1 × 10−13 M. By virtue of ultra-sensitivity and good flexibility of the Ag-C-fiber nanotemplate, Raman signals of two kinds of antiepileptic drugs called levetiracetam and sodium valproate were successfully obtained using an SERS-based spectral method. The Ag-C-fiber SERS detection platform demonstrated a good linear response (R2 = 0.97486) in sensing sodium valproate concentrations in the range of 1 × 103 ng/μL−1–1 ng/μL. We believe that this reliable strategy has potential application for trace detection and rapid screening of antiepileptic drugs in the clinic.

Funder

the Science and Technology Project of Hebei Education Department

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3