Hydrothermal In-Situ Synthesis and Anti-Corrosion Performance of Zinc Oxide Hydroxyapatite Nanocomposite Anti-Corrosive Pigment

Author:

Xu Xiaohong,Wang Huali,Wu Jianfeng,Chen Zhichao,Zhang Xinyi,Li Meiqin

Abstract

With the rapid development of the Chinese marine economy, the anti-corrosion of ships and marine engineering facilities has become urgent to be solved. In this paper, a stable zinc-hydroxyapatite (ZnO-HAP) nanocomposite anti-corrosive pigment was prepared by using the hydrothermal in situ synthesis technique, which supported nano-ZnO onto the hydroxyapatite (HAP) surface. The phase composition, microstructure, and performance of the ZnO-HAP nanocomposite were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), electron probe microanalysis (EPMA), and electrochemical impedance spectroscopy (EIS), and the anti-corrosion mechanism of the ZnO-HAP nanocomposite was discussed. The results show that the corrosion resistance of the ZnO-HAP/epoxy is better than that of the pure epoxy resin coating. The optimum condition to fabricate ZnO-HAP/epoxy with suitable corrosion resistance was found to be a ZnO/HAP ratio of 0.65/0.35. The synergistic complementation mechanism of ZnO and HAP enriches the metallic anti-corrosion theory and provides a new idea for the synthesis of novel and promising anti-corrosive pigments.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3