Abstract
Thin film thermoelectric generators are expected to be applied as power supplies for various Internet of Thing devices owing to their small size and flexible structure. However, the primary challenges of thin film thermoelectric generators are to improve their thermoelectric performance and reduce their manufacturing cost. Hence, Bi2Te3 thin films were deposited using direct current magnetron sputtering, followed by heat treatment at 573 K with different temperature increase rates ranging from 4 to 16 K/min. The in-plane Seebeck coefficient and electrical conductivity were measured at approximately 293 K. The in-plane thermal conductivity was calculated using the models to determine the power factor (PF) and dimensionless figure of merit (ZT). The temperature increase rate clearly affected the atomic composition, crystal orientation, and lattice strains, but not the crystallite size. The PF and dimensionless ZT increased as the temperature increase rate increased. The highest PF of 17.5 µW/(cm·K2) and ZT of 0.48 were achieved at a temperature increase rate of 16 K/min, while the unannealed thin film exhibited the lowest PF of 0.7 µW/(cm·K2) and ZT of 0.05. Therefore, this study demonstrated a method to enhance the thermoelectric performance of Bi2Te3 thin films by heat treatment at the appropriate temperature increase rate.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献