Enhancing Pavement Distress Detection Using a Morphological Constraints-Based Data Augmentation Method

Author:

Xu Zhengchao12,Dai Zhe3ORCID,Sun Zhaoyun1,Zuo Chen3ORCID,Song Huansheng1,Yuan Changwei3

Affiliation:

1. School of Information Engineering, Chang’an University, Xi’an 710064, China

2. School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, China

3. College of Transportation Engineering, Chang’an University, Xi’an 710064, China

Abstract

Pavement distress data in a single section usually presents a long-tailed distribution, with potholes, sealed cracks, and other distresses normally located at the tail. This distribution will seriously affect the performance and robustness of big data-driven deep learning detection models. Conventional data augmentation algorithms only expand the amount of data by image transformation and fail to enlarge the data diversity. Due to such a drawback, this paper proposes a novel two-stage pavement distress image augmentation pattern, in which a mask is generated randomly according to the geometric features of the distress in the first stage; and in the second stage, a distress-free pavement image with the fused mask is transformed into a pavement distress image. Furthermore, two convolutional networks, M-DCGAN and MDTMN, are designed to complete the generation task in two stages separately. In comparison with other generation algorithms, the quality and diversity of the generation results of proposed algorithms are better than other algorithms. In addition, distress detection tests are conducted which indicate that the expanded dataset can raise the IoU from 48.83% to 83.65% at maximum, and the augmented data by the proposed algorithm contributes more to the detection performance.

Funder

Key projects of Shaanxi Provincial Department of Science and Technology

Postdoctoral Science Foundation of China

Central Universities Basic Research Special Funds

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3