The Micro-Scaled Characterization of Natural Terrestrial Ferromanganese Coatings and Their Semiconducting Properties

Author:

Xu Xiaoming,Ding Hongrui,Li Yan,Wang Haoran,Lu Anhuai

Abstract

Different types of ferromanganese coatings were collected from the Chinese mainland to study their mineralogical characteristics and semiconducting properties. Measurements, including by optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy, micro-Raman spectrometer and transmission electron microscope, were employed to study their morphology, mineral assemblage, element abundance and distribution patterns. Soil Fe coatings are mainly composed of Al-rich hematite and clays. Soil Fe/Mn coatings can be divided into an outer belt rich in birnessite and an inner belt rich in hematite, goethite, ilmenite and magnetite. Goethite is the only component of rock Fe coatings. Rock Fe/Mn coatings mainly consist of birnessite and hematite, and alternating Fe/Mn-rich layers and Fe/Mn-poor layers can be observed. Powders were scraped off from the topmost part of ferromanganese coatings to conduct laboratory photochemical experiments. The photocurrent–time behavior indicates that natural coating electrodes exhibit an immediate increase in photocurrent intensity when exposed to light irradiation. Natural coatings can photo-catalytically degrade 14.3%–58.4% of methyl orange in 10 h. Under light irradiation, the photocurrent enhancement and organic degradation efficiency of the rock Fe/Mn coating, which has a close intergrowth structure of Fe and Mn components, is most significant. This phenomenon is attributed to the formation of semiconductor heterojunctions, which can promote the separation of electrons and holes. Terrestrial ferromanganese coatings are common in natural settings and rich in semiconducting Fe/Mn oxide minerals. Under solar light irradiation, these coatings can catalyze important photochemical processes and will thus have an impact on the surrounding environment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3