Hardening of HVOF-Sprayed Austenitic Stainless-Steel Coatings by Gas Nitriding

Author:

Lindner ThomasORCID,Kutschmann Pia,Löbel Martin,Lampke ThomasORCID

Abstract

Austenitic stainless steel exhibits an excellent corrosion behavior. The relatively poor wear resistance can be improved by surface hardening, whereby thermochemical processes offer an economic option. The successful diffusion enrichment of bulk material requires a decomposition of the passive layer. A gas nitriding of high velocity oxygen fuel spraying (HVOF)-sprayed AISI 316L coatings without an additional activation step was studied with a variation of the process temperature depending on the heat-treatment state of the coating. A successful nitrogen enrichment was found in as-sprayed condition, whereas passivation prevents diffusion after solution heat treatment. The phase composition and microstructure formation were examined. The crystal structure and lattice parameters were determined using X-ray diffraction analysis. The identified phases were assigned to the different microstructural elements using the color etchant Beraha II. In as-sprayed condition, the phase formation in the coating is related to the process temperature. The formation of the S-phase with interstitial solvation of nitrogen is achieved by a process temperature of 420 °C. Precipitation occurs during the heat treatment at 520 °C. In both cases, a significant increase in wear resistance was found. The correlation of the thermochemical process parameters and the microstructural properties contributes to a better understanding of the requirements for the process combination of thermal spraying and diffusion.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3