Abstract
This research aimed to obtain a C-based coating electrochemically applied on an AA6063 alloy. Two electrochemical cells were designed and manufactured to obtain the C-based coating film on flat and cylindrical samples. Structural and microstructural characterizations were performed along with fatigue and corrosion performance testing. The structural and microstructural characterization revealed that the C-based coating deposited on AA6063 corresponded to carbon nanofibers and/or polycrystalline graphite. The performance testing showed an increase in fatigue life along with a decrease in corrosion resistance. The fracture surfaces of the fatigued samples were inspected by Scanning Electron Microscopy and 3D optical microscopy to correlate them with fatigue life estimation. The aforementioned process is a step towards the future development of a complete coating system that will overcome corrosion susceptibility. The carbon film obtained by this electrochemical route has not previously been reported elsewhere.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Reference45 articles.
1. Fatigue of Metals;Peralta,2014
2. Historical background;Park,2012
3. A state-of-the-art review on fatigue life prediction methods for metal structures
4. Modern Electroplating;Schlesinger,2011
5. Aerospace Materials Handbook;Zhang,2013
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献