Influence of Surface Coating towards the Controlled Toxicity of ZnO Nanoparticles In Vitro

Author:

Mohammad FaruqORCID,Bwatanglang Ibrahim Birma,Al-Lohedan Hamad A.ORCID,Shaik Jilani PurusottapatnamORCID,Al-Tilasi Hissah Hamad,Soleiman Ahmed A.

Abstract

The uncertainties in ZnO-mediated toxicity and particle stability in a biological system remain a challenge and mitigate against deployment as next-generation nanoparticles (NPs), especially in biomedical applications. With that perspective, the present study investigates the surface chemical properties of ZnO NPs coated with three different surfactant biomolecules, namely polyethylene glycol (PEG), cetyltrimethylammonium bromide (CTAB), and sodium dodecyl sulfate (SDS) to control the toxicity-induced potentials. On the testing of the surface-functionalized ZnO NPs, notable changes in the particle sizes, morphology, zeta potential, and hydrodynamic size compared to the pure ZnO NPs are observed. In addition, FTIR spectroscopy, TGA, XRD, XPS, and HRTEM analysis showed significant changes in the surface structures and surface functional groups of the three different ZnO NPs on surface functionalization. Following the physical characterization, the cell viability of rat liver BRL-3A-treated ZnO–PEG, ZnO–CTAB, and ZnO–SDS compared to pure ZnO NPs (<50%) falls between 70% and 95% in a dose-determined manner. The cells treated with the pure ZnO NPs showed a higher percentage of apoptotic cells (~61%), which is significantly higher than the 3.4%, 1.5%, and 0.6% for ZnO–PEG-, ZnO–CTAB-, and ZnO–SDS-treated cells (respectively). Furthermore, the surface functionalization was significantly observed to reduce the content of reactive oxygen species (ROS) to 13.6%, 9.7%, and 2.6% compared to the content level of ~71% from the pure ZnO-treated cells. Besides the marked impairment of mitochondrial potentials induced by the pure ZnO NPs, the surfactant–ZnO NPs were observed to slow down the induction of DNA fragmentation and retain the structural integrity of mitochondrial membranes. The toxicity effects are controlled in the order of ZnO–SDS > ZnO–CTAB > ZnO–PEG, i.e., anionic > cationic > non-ionic. Overall from the analysis, the study stresses the importance of having a suitable surface ligand for the ZnO NPs so as to use them in the biomedical sector.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3