Preparation and Characterization of Polymer-Based Electrospun Nanofibers for Flexible Electronic Applications

Author:

Mayakrishnan Gopiraman1,Vanaraj Ramkumar2,Kitauchi Takayasu1,Kanthapazham Rajakumar3ORCID,Kim Seong Cheol2,Kim Ick Soo1ORCID

Affiliation:

1. Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Japan

2. School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

3. Nanotechnology Research & Education Centre, South Ural State University, Chelyabinsk 454080, Russia

Abstract

This study was undertaken to synthesize and characterize PVDF/CB (polyvinylidene fluoride/carbon block) nanofiber composites for flexible, wearable electronic applications. Nanofibers were produced by electrospinning method and used to produce thin films. Fiber surface morphologies were investigated by FE-SEM and HR-TEM, crystalline structures by FT-IR and P-XRD, and thermal characteristics by TGA and DSC. The prepared materials are thermally stable up to 390 °C. Mechanical properties were ascertained using tensile characteristics, and results showed that the addition of carbon black (CB) powder to PVDF polymer solution decreased Young’s modulus values and reduced the dielectric constant of PVDF nanofiber films. The obtained dielectric constants of nanofibers loaded with various concentrations of CB were found from 1.4 to 2.0. Flexible electronics materials are essential for the production of wearable electronics and various biomedical engineering applications. The PVDF/CB nanofibers containing 1% showed maximum Young’s moduli of 101.29 ± 15.94. Nanofiber thin films offer various advantages, including simplicity of manufacture, low power consumption, flexibility, and exceptional stability, all of which are crucial for flexible, wearable device applications.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3