The Effect of Chemical Composition on the Microstructure and Properties of Multicomponent Nickel-Based Boride Layers Produced on C45 Steel by the Hybrid Method

Author:

Tacikowski Michał1,Łukaszewicz Grzegorz1ORCID,Kulka Michał2ORCID,Diduszko Ryszard3ORCID,Wierzchoń Tadeusz1

Affiliation:

1. Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland

2. Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznan, Poland

3. Łukasiewicz Research Network—Institute of Microelectronics and Photonics, al. Lotników 32/46, 02-668 Warsaw, Poland

Abstract

Layers of iron–nickel Fe-Ni-B-type borides were produced on C45 steel using a new hybrid treatment variant which combines boriding under glow discharge conditions with galvanic nickel precoating. The aim was to investigate whether these layers could constitute an alternative to the previously developed multicomponent Fe-Ni-B-P-type layers produced by a hybrid treatment variant using chemical nickel precoating. The basis for assessing the effects of both alternative treatments was a comparative analysis of the microstructure and performance properties of three model boride layers: iron–nickel boride layers of the Fe-Ni-B and Fe-Ni-B-P types, and reference iron Fe-B-type boride layer. It was demonstrated that the new variant of hybrid treatment produces Fe-Ni-B layers with the highest thickness, slight porosity, the optimal structure of Ni2B boride in the near-surface zone and the best performance properties. These layers show good adhesion, a much higher hardness of 2200 HV0.05 and near-surface compressive stresses of −450 MPa. Fe-Ni-B-P layers show slightly better wear resistance for higher loads, but like Fe-B layers, they are susceptible to spalling. It was demonstrated that Fe-Ni-B layers produced using boriding with nickel galvanic steel precoating could find application in heavy-duty elements of nanobainitic steel processing.

Funder

Faculty of Materials Science and Engineering of the Warsaw University of Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3