Abstract
This study reports the microstructure and surface properties of P20 steel processed by laser surface engineering (involving surface hardening and melting), which are carried out using a fiber laser with the maximum power of 2 kW. Ultrafine martensite laths with high boundary density are formed both in the laser surface hardened layer and in the melted layer. This dramatically improves the surface hardness of the P20 steel. However, the laser surface melted layer exhibits a relatively lower hardness than the laser surface hardened layer. It can be attributed to the remarkable autotempering effect and the vaporization of alloy elements in the melted layer. The wear resistance and thermal cracking resistance of the samples treated by laser surface engineering show a significant improvement compared with the as received material. The surface hardened layer exhibits superior wear and thermal cracking resistance due to its relatively high surface hardness and plastic deformation resistance, which can effectively suppress the formation of cracks during wear and thermal cracking tests.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Innovation Ability Improvement Project for small and medium-sized high-tech company in Shandong Province
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献