Electrodeposition of Nanostructured Co–Cu Thin Alloy Films on to Steel Substrate from an Environmentally Friendly Novel Lactate Bath under Different Operating Conditions

Author:

Alsaiari Raiedhah A.1ORCID,Kamel Medhat M.2,Mohamed Mervate M.12ORCID

Affiliation:

1. Empty Quarter Research Centre, Department of Chemistry, Faculty of Science and Arts in Sharurah, Najran University, Sharurah 78362, Saudi Arabia

2. Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt

Abstract

A new lactate bath was proposed to deposit Co–Cu thin alloy films in nanostructure form onto a steel cathode. The deposition bath contained CuSO4.5H2O, CoSO4.7H2O, CH3CHOHCOOH, and anhydrous Na2SO4 at pH 10. The effects of [Co2+]/[Cu2+] molar ratios, lactate ion concentration, current density (CD), and bath temperature on cathodic polarization, cathodic current efficacy (CCE), composition, and structure of the Co–Cu alloys were investigated. The new bath had a high cathodic current efficiency of 85%, which increased with the applied CD. However, it decreased as the temperature increased. The produced coatings have an atomic percentage of Cu ranging from 19.8 to 99%. The deposition of the Co–Cu alloy belonged to regular codeposition. The Co content of the deposit increased with the amount of Co2+ ions in the bath, lactate concentration, and current density but decreased as the temperature increased. Cobalt hexagonal close-packed (HCP) and copper-rich, face-centered cubic (FCC) Co–Cu phases combine to form the polycrystalline structure of the electrodeposited Co–Cu alloy. The average crystallite size ranges between 46 and 89 nm. An energy dispersive X-ray (EDX) examination confirmed that the deposit contained Cu and Co metals. The throwing power and throwing index of the alkaline lactate bath were evaluated and found to be satisfactory.

Funder

Deanship of Scientific Research at Najran University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3