Theoretical Studies of the Adsorption and Migration Behavior of Boron Atoms on Hydrogen-Terminated Diamond (001) Surface

Author:

Liu Xuejie,Kang Congjie,Qiao Haimao,Ren Yuan,Tan Xin,Sun Shiyang

Abstract

The adsorption and migration activation energies of boron atoms on a hydrogen-terminated diamond (001) surface were calculated using first principles methods based on density functional theory. The values were then used to investigate the behavior of boron atoms in the deposition process of B-doped diamond film. On the fully hydrogen-terminated surface, the adsorption energy of a boron atom is relatively low and the maximum value is 1.387 eV. However, on the hydrogen-terminated surface with one open radical site or two open radical sites, the adsorption energy of a boron atom increases to 4.37 eV, and even up to 5.94 eV, thereby forming a stable configuration. When a boron atom deposits nearby a radical site, it can abstract a hydrogen atom from a surface carbon atom, and then form a BH radical and create a new radical site. This study showed that the number and distribution of open radical sites, namely, the adsorption of hydrogen atoms and the abstraction of surface hydrogen atoms, can influence the adsorption and migration of boron atoms on hydrogen-terminated diamond surfaces.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3