Durable and Superhydrophobic Aluminium Alloy with Microscale Hierarchical Structures and Anti-Drag Function Inspired by Diving Bell Spider

Author:

Chen You,Quan Zijing,Sun Yuhan,Chi Deqiang,Liu Delei,Zhou Liang,Zhang Junqiu,Mu Zhengzhi,Wang Ze,Li BoORCID,Niu ShichaoORCID,Han Zhiwu,Ren Luquan

Abstract

Coating materials with special surface wettability are widely applied in marine paint systems used in the naval industry to reduce the corrosion and viscous drag of seawater. However, traditional coatings are inefficient and limited, either by poor durability or insufficient anti-drag capacity. Here, inspired by the diving bell spider, a bionic superhydrophobic coating with multiscale hierarchical architecture was successfully prepared on the surface of aluminium alloy. It possesses excellent mechanical abrasion durability, chemical durability, and low adhesion. Remarkably, the water contact angles could remain over 150.9° after more than 15 abrasion cycles or strong acid/alkali conditions. In addition, the impacting water droplet lifted off the surface of bionic superhydrophobic aluminium alloy (BSAA) within 13 ms, illustrating an excellent low adhesion property. In fact, when the BSAA is immersed in water, it could absorb bubbles and form a gas membrane. The existence of the gas membrane could prevent water and anaerobic organisms from contacting and even corroding the BSAA. Meanwhile, the gas membrane acts as a lubricant and significantly deceases friction at the solid–liquid interface, reducing the drag for BSAA. The BSAA proposed in this work has broad application prospects, such as medical devices, microfluidic chips, gas separation and collection in water.

Funder

National Key Research and Development Program of China

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

National Natural Science Foundation of China

Program for Jilin University Science and Technology Innovative Research Team

Natural Science Foundation of Jilin Province

China Postdoctoral Science Foundation

National Postdoctoral Program for Innovative Talents

Graduate Student Innovation Fund of Jilin University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3