An In-Situ Electroplating Fabricated Fabry-Perot Interferometric Sensor and Its Temperature Sensing Characteristics

Author:

Li Sijia,Li YulongORCID,Liu Xubo,Li Xuewen,Ding Tao,Ouyang Hua

Abstract

In this study, in-situ electroplating method was used to fabricate a metal joint fixed extrinsic Fabry-Perot interferometric (EFPI) sensor. Specifically, optical fibers were firstly chemical plated with a very thin conductive nickel layer and then electroplated with nickel coating. After that, in-situ electroplating method was used to fix the metallized optical fibers and the capillary steel tube, the reflection spectra changes of the EFPI sensors during the in-situ electroplating process were recorded in real time, and the temperature sensing characteristics of the EFPI sensors were studied assisted by the temperature sensing system. Results show that: (i) optical fibers are well protected by the nickel layer; (ii) the reflection spectra of the EFPI sensors are clear and complete in the whole in-situ electroplating process, it is feasible to fabricate a EFPI sensor with the in-situ electroplating method; (iii) with the increases of temperature, the peak numbers of the reflection spectra of the EFPI sensors increase gradually; (iv) the EFPI sensors with different cavity length based on the in-situ electroplating method show excellent sensing characteristics, the temperature sensitivities reach up to about 700, 600, and 400 pm/°C from room temperature to 400 °C, respectively.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances in optical fiber high-temperature sensors and encapsulation technique [Invited];Chinese Optics Letters;2023

2. All-Fabric-Based Flexible Capacitive Sensors with Pressure Detection and Non-Contact Instruction Capability;Coatings;2022-02-23

3. Nanosensors for smartphone-enabled sensing devices;Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention;2022

4. Nanosensors for medical diagnosis;Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3