Abstract
Silver nanowire (AgNWs) transparent conductive film (TCF) is considered to be the most favorable material to replace indium tin oxide (ITO) as the next-generation transparent conductive film. However, the disadvantages of AgNWs, such as easy oxidation and high wire-wire junction resistance, dramatically limit its commercial application. In this paper, moisture treatment was adopted, and water was dripped on the surface of AgNWs film or breathed on the surface so that the surface was covered with a layer of water vapor. The morphology of silver nanowire mesh nodes is complex, and the curvature is large. According to the capillary condensation theory, water molecules preferentially condense near the geometric surface with significant curvature. The capillary force is generated, making the wire-wire junction of AgNWs mesh bond tightly, resulting in good ohmic contact. The experimental results show that AgNWs-TCF treated by moisture has better conductivity, with an average sheet resistance of 20 Ω/sq and more uniform electrical properties. The bending test and adhesion test showed that AgNWs-TCF treated by moisture still exhibited good mechanical bending resistance and environmental stability.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献