Influences of Synthetic Parameters on Morphology and Growth of High Entropy Oxide Nanotube Arrays

Author:

Shi Yunzhu,Li Rui,Lei ZhifengORCID

Abstract

Nanoscale and nanostructured materials have drawn great attention owing to their outstanding and unique properties. Enlightened by the study of “entropy-stabilized oxides”, nanotubes consisting of multi-component mixed metal oxides are developed, which formed on equi-atomic TiZrHfNbTa high-entropy alloy (HEA). However, the growth mechanism and how the oxidation conditions influence the nanotube growth and morphology remains unknown. In the present study, by controlling the anodization parameters (applied voltages and time) and bath compositions (fluoride concentration and water content), scanning electron microscope and transmission electron microscopy are conducted to reveal the morphological evolution. The present work uncovers how the synthetic parameters influence the tube growth and morphology formed on equi-atomic TiZrHfNbTa HEA, therefore gaining insight into the growth mechanism and the feasibility of controlling the morphology of multi-component oxide nanotubes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

The Fundamental Research Funds for the Central Universities

The Science and Technology Innovation Program of Hunan Province

The Gusu Leading Talents Program

The Basic Research Program of Taicang

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From fabrication to mechanical properties: exploring high-entropy oxide thin films and coatings for high-temperature applications;Frontiers in Coatings, Dyes and Interface Engineering;2024-07-03

2. Mechanical Alloying of Aluminium Alloys;Advances in Chemical and Materials Engineering;2024-02-27

3. Current and future applications of mechanically alloyed materials;Mechanical Alloying of Ferrous and Non-Ferrous Alloys;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3