Relevant Aspects of Piranha Passivation in Ti6Al4V Alloy Dental Meshes

Author:

Cruz NunoORCID,Gil JavierORCID,Punset MiquelORCID,Manero José María,Tondela João PauloORCID,Verdeguer Pablo,Aparicio ConradoORCID,Rúperez ElisaORCID

Abstract

Passivation of titanium alloy dental meshes cleans their surface and forms a thin layer of protective oxide (TiO2) on the surface of the material to improve resistance to corrosion and prevent release of ions to the physiological environment. The most common chemical agent for the passivation process of titanium meshes is hydrochloric acid (HCl). In this work, we introduce the use of Piranha solution (H2SO4 and H2O2) as a passivating and bactericidal agent for metallic dental meshes. Meshes of grade 5 titanium alloy (Ti6Al4V) were tested after different treatments: as-received control (Ctr), passivated by HCl, and passivated by Piranha solution. Physical-chemical characterization of all treated surfaces was carried out by scanning electron microscopy (SEM), confocal microscopy and sessile drop goniometry to assess meshes’ topography, elemental composition, roughness, wettability and surface free energy, that is, relevant properties with potential effects for the biological response of the material. Moreover, open circuit potential and potentiodynamic tests were carried out to evaluate the corrosion behavior of the differently-treated meshes under physiological conditions. Ion release tests were conducted using Inductively Coupled Plasma mass spectrometry (ICP-MS). The antibacterial activity by prevention of bacterial adhesion tests on the meshes was performed for two different bacterial strains, Pseudomonas aeruginosa (Gram-) and Streptococcus sanguinis (Gram+). Additionally, a bacterial viability study was performed with the LIVE/DEAD test. We complemented the antibacterial study by counting cells attached to the surface of the meshes visualized by SEM. Our results showed that the passivation of titanium meshes with Piranha solution improved their hydrophilicity and conferred a notably higher bactericidal activity in comparison with the meshes passivated with HCl. This unique response can be attributed to differences in the obtained nanotextures of the TiO2 layer. However, Piranha solution treatment decreased electrochemical stability and increased ion release as a result of the porous coating formed on the treated surfaces, which can compromise their corrosion resistance. Framed by the limitations of this work, we conclude that using Piranha solution is a viable alternative method for passivating titanium dental meshes with beneficial antibacterial properties that merits further validation for its translation as a treatment applied to clinically-used meshes.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3