Prediction of Contact Angle for Oriented Hydrophobic Surface and Experimental Verification by Micro-Milling

Author:

Zhu Yiwen12,Xu Wei12,Cao Ziyang12ORCID,Meng Wenlu12,Ni Jiawei12,Pan Jie12,Wei Dong12

Affiliation:

1. College of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

2. Suzhou Key Laboratory of Precision and Efficient Machining Technology, Suzhou 215009, China

Abstract

The rectangular microgroove surfaces have obvious anisotropy, which can control the movement of water droplets in parallel and vertical directions. Based on such a property, anisotropic functional surfaces are expected to have potential applications in the fields of droplet-oriented delivery and microfluidics. Micro-milling can accurately adjust the dimension of microstructures, which is convenient to explore the optimal micro-structural parameters. In this study, the non-composite and composite state prediction models of contact angle on the oriented hydrophobic surface were established based on minimum Gibbs free energy, and the effect of micro-structural dimension parameters on contact angle was investigated. Then, the rectangular microgroove structure on 316 L stainless steel was prepared using micro-milling. The composite state prediction model of contact angle was found to be more consistent with the actual situation, and reducing the width of the convex platform was beneficial to increasing the contact angle. In particular, the contact angle in the parallel direction reached 146.5° when the width of the convex platform was 60 μm, and the accuracy of the prediction model was 98.4%. The proposed prediction models of contact angle provide a theoretical basis for designing and preparing oriented hydrophobic surfaces.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3