Evaluating the Corrosion Inhibition Efficiency of Pyridinium-Based Cationic Surfactants for EN3B Mild Steel in Acidic-Chloride Media

Author:

Talat RabiaORCID,Asghar Muhammad AdeelORCID,Tariq Irsa,Akhter Zareen,Liaqat FarohaORCID,Nadeem Laiba,Haider AliORCID,Ali Saqib

Abstract

Two new effective corrosion inhibitors, namely N-(n-octyl)-3-methylpyridinium bromide (Py8) and N-(n-dodecyl)-3-methylpyridinium bromide (Py12), have been presented. The cationic pyridinium-based surfactants were analyzed for the corrosion protection of general purpose steel (EN3B) against a strong corrosive media (3.5% NaCl, pH 1.5). The results of the electrochemical measurements, i.e., Tafel polarization, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) revealed a mixed-type behavior of both inhibitors, and the maximum inhibition efficiency (IE) achieved with Py8 and Py12 was 85% and 82%, respectively. The process of adsorption of synthesized inhibitors followed the Langmuir adsorption isotherm, and a higher value of Kads highlighted the existence of strong interaction between inhibitors and the EN3B mild steel surface. Furthermore, the values of ΔG°ads were calculated to be −32 kJ mol−1 for Py8 and −33 kJ mol−1 for Py12, indicating the coexistence of both physisorbed and chemisorbed molecules. The surface morphology of EN3B mild steel samples was observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), where the reduced surface roughness in the presence of Py8 and Py12 in chloride media further supported the evidence of an efficient inhibition process. Density functional theory (DFT) calculations reveal excellent correlation with the experimental results, with Py8 showing superior corrosion inhibition potential, signifying that the alkyl chain length and intramolecular charge transfer are crucial factors in deciding the inhibition performance of the synthesized cationic surfactants. Furthermore, this study proposes the mechanism for the adsorption of the surfactant-based inhibitors over the EN3B mild steel surface, which leads to the formation of an effective and protective anticorrosive film.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3