Affiliation:
1. The Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences” (Research Center of Biotechnology RAS), Leninsky Prospect 14, 119991 Moscow, Russia
2. The Federal State Institution “V.M. Gorbatov Federal Research Centre for Food Systems” of the Russian Academy of Sciences (RAS), Talalikhina St. 26, 109316 Moscow, Russia
Abstract
The resistance of microorganisms’ biofilms to antibacterials is a problem both for medicine and for many industries. Increasing the effectiveness of antimicrobial agents is an urgent task. The goal of the present work was to develop a new approach to development of anti-biofilm compositions based on conventional disinfectants in combination with enhancers (adjuvants). Methods of microbiology (viable cells count, model biofilms) and electron microscopy were employed. This research formulates the principles for selection of adjuvants. The adjuvants should: (1) increase the efficiency of decomposition of the biofilm matrix or/and (2) suppress the microbial protective mechanisms. For testing anti-biofilm compositions, two models of biofilms have been developed, on a solid surface at the interface with air or liquid. It was demonstrated that hydrogen peroxide, ethanol, isopropanol, and 4-hexylresorcinol enhanced the biocidal effect of disinfectants based on oxidants (peroxides and chlorine-containing) and quaternary ammonium salts by three to six orders of magnitude. Mechanisms of adjuvant action were mechanical decomposition of the matrix (by oxygen bubbles formed inside a biofilm in the case of hydrogen peroxide), coagulation of matrix polymers (in the case of alcohols), and a decrease in metabolism (in the case of 4-hexylresorcinol). The use of approved chemicals as adjuvants will accelerate the design of effective anti-biofilm antiseptics for medicine, social hygiene, and food manufactures and other industries.
Funder
Ministry of Science and Higher Education of the Russian Federation
Ministry of Science and Higher Education of the Russian Federation for FIC Biotechnology RAS
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献