Abstract
By means of an electrochemical workstation, hydrogen evolution device, optical microscope (OM) and scanning electron microscope (SEM), the corrosion behaviors of an as-rolled Mg-8%Li alloy with a dual phase structure in 0.9 wt.% NaCl and 3.5 wt.% NaCl solutions have been investigated and compared. The results show that when the immersion time exceeds 8 h, the hydrogen evolution rate of the alloy in the 0.9 wt.% NaCl is 3 times higher than that in the 3.5 wt.% NaCl solution. Moreover, the corrosion behaviors of the alloy are obviously different in the two differently concentrated NaCl solutions. In the 3.5 wt.% NaCl solution, the localized corrosion is much more severe and can occur simultaneously in the interior of both the α-Mg and β-Li matrix phases. However, the localized corrosion in the 0.9 wt.% NaCl solution is obviously weak and mainly occurs at the α-Mg phase.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献