Experimental and Numerical Investigation of CMT Wire and Arc Additive Manufacturing of 2205 Duplex Stainless Steel

Author:

Yuan Yuheng,Li RuifengORCID,Bi Xiaolin,Gu Jiayang,Jiao Chen

Abstract

In this paper, the mechanical properties, microhardness and metallographic structure of 2205 duplex stainless steel by cold metal transfer (CMT) wire and arc additive manufacturing process are studied. The results show that the ultimate tensile strength, yield strength and elongation at break of reciprocating additive along building direction (BD) are 856.73 MPa, 710.5 MPa and 42.35%, respectively. In addition, the same direction motion (SDM) and reciprocating motion (RM) is selected as parameter variables in the experiment, and the finite element model is established by ABAQUS software, and the temperature and residual stress field of the additive forming at different paths are tested and simulated. Firstly, the accuracy of the selected finite element model was verified by comparing the experimental results from the simulation results to the macroscopic morphology of the cross-section of the single-pass additive specimen. The numerical simulation results show that due to the difference of the additive scanning paths, the distribution of the temperature field has a large difference, and with the increase of the deposited layer, the heat accumulation of the SDM additive is larger than that of the RM, so that the end collapses of the SDM additive will occur in the actual additive specimen. By simulating and comparing the equivalent stress distribution of different paths, the equivalent stress distribution of SDM and RM is approximately the same in the vertical direction, and the minimum of equivalent stress appears at the bottom of the deposition layers, about 116.5 MPa, and the maximum of equivalent stress appears at 8 mm from the top, about 348 MPa.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3