Cross-Scale Biological Models of Species for Future Biomimetic Composite Design: A Review

Author:

Song Wenda,Mu ZhengzhiORCID,Zhang Zhiyan,Wang Yufei,Hu Handong,Ma Zhe,Huang Liewei,Wang Ze,Zhang Binjie,Li Yujiao,Zhang Shuang,Li BoORCID,Zhang Junqiu,Niu ShichaoORCID,Han Zhiwu,Ren Luquan

Abstract

The rise in structural performance requirements in engineering is driving the research and development of stronger, stiffer, and lighter materials. However, most traditional artificial materials are unable to meet the needs of modern industrial and technological development. In fact, multifarious creatures in nature are further ahead in their use of structural materials. There is a fairly limited selection of natural structural materials at ambient temperatures. They usually consist of hard and soft phases arranged in a complex hierarchy with characteristic dimensions ranging from nanoscale to macroscale. The resulting materials usually show a nearly perfect combination of strength and toughness integrated with lightweight characteristics. This is exactly what is required of engineering materials. In this review, different biological materials were divided into the following types in terms of structural elements: 1D fibrous structures, 2D layered structures, 3D cellular structures and heterogeneous interface structures. For each structural element, corresponding structure components and mechanical properties of typical organisms were well described. Abundant sophisticated models of natural biological structures were discussed contrastively. The purpose of this review was to summarize the excellent properties of multi-dimensional biological models with cross-scale features and to reveal the relationship between structure characteristics and function mechanism, which could provide valuable references for the design and optimization of a future biomimetic composite with high mechanical performance. This review is anticipated to not only inspire novel biomimetic design but also offer a window for the deep understanding of existing outstanding structural composites in diversified species, which could provide continuous innovative power for composite renovation in many engineering fields.

Funder

National Key Research and Development Program of China

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3