A Rapidly Self-Healing Superhydrophobic Coating Made of Polydimethylsiloxane and N-nonadecane: Stability and Self-Healing Capabilities

Author:

Hu Qin1,Hu Ziyuan1ORCID,Jiang Xingliang1,Yang Hang1,Liu Yuhao1,An Yaya1

Affiliation:

1. Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, Chongqing University, Chongqing 400044, China

Abstract

Superhydrophobic surfaces have garnered significant attention in various industrial applications, such as photovoltaic power generation, anti-icing, and corrosion resistance, due to their exceptional water-repellent properties. However, the poor durability of conventional superhydrophobic coatings has severely impeded their practical implementation. To achieve the dual self-recovery of microscale and nanoscale surface structures and maintain low surface energy after damage to superhydrophobic coatings, thereby enhancing their durability, a rapidly self-healing superhydrophobic coating was developed using polydimethylsiloxane (PDMS) and n-nonadecane in this study. The coating surface demonstrated exceptional hydrophobic characteristics, as evidenced by a water contact angle (WCA) of 157.5° and a sliding angle (SA) of 4.2° achieved at optimized proportions. Through scanning electron microscopy, it was observed that the coating surface exhibited a rough structure at both the microscale and nanoscale. The stability test results showed that the WCA only decreases by 5.7° and the SA only increases by 3.6° after 100 instances of external friction. The stability test results demonstrated that the superhydrophobic coating maintains excellent hydrophobicity under mechanical external forces and in acidic and alkaline environments. The results of the self-healing capability test showed that the WCA rebounded to 151.5° and 149.5° after we subjected the samples to 20 MPa of vertical pressure damage and chloroform exposure for 4 h, respectively. The coating regained a robust hydrophobic state even after experiencing repeated mechanical and chemical damage. The above results indicate that the resulting coating demonstrates outstanding durability, including high resistance to friction, stability against acids and alkalis, and the ability to self-recover hydrophobicity after repeated damage.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3