Processing of Porous-Core Materials for Bone Implant Applications: A Permeability and Mechanical Strength Analysis

Author:

Macías Rogelio1ORCID,Olmos Luis1ORCID,Garnica Pedro2ORCID,Alanis Ivon1,Bouvard Didier3,Chávez Jorge4ORCID,Jiménez Omar5ORCID,Márquez-Beltrán César6,Cabezas-Vila Jose L.1ORCID

Affiliation:

1. Instituto de Investigaciones en Ciencias de la Tierra, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Mexico

2. División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia 58120, Mexico

3. National Centre for Scientific Research (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMAP), Grenoble Institute of Technology (Grenoble INP), Universite Grenoble Alpes, 38000 Grenoble, France

4. Departamento de Ingeniería Mecánica Eléctrica, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Mexico

5. Departamento de Ingeniería de Proyectos, Universidad de Guadalajara, Zapopan 45100, Mexico

6. Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico

Abstract

This study presents a methodology to fabricate Ti6Al4V cylindrical compacts with a highly porous core and dense shell with the aim to mimic the bone microstructure. Compacts with different core diameters were obtained via conventional pressing and sintering. Large pores were created with the aid of pore formers. Dilatometry was used to determine the sintering kinetics, while X-ray computed tomography was used for characterization. Also, the permeability was evaluated on the 3D microstructure, and the mechanical strength was evaluated via compression tests. The results indicated that sintering was constrained by the different densification rates of the porous and dense layers. However, defect-free compacts were obtained due to neck bonding between the Ti6Al4V particles. Large pores were located in the designed core with a similar pore size distribution. The permeability increased following a power law as a function of the pore volume fraction. The porous core drove the stiffness of the bilayer components, while the combination of both layers increased their strength. The bilayer materials showed permeability (1.36 × 10−10 m2), mechanical properties (E = 6.83 GPa and σy = 299 MPa), and admissible strain (σy/E = 43 × 10−3) similar to those of human bones.

Funder

National Council of Humanities, Science and Technology CONAHCYT

PICIR 2023 projects announcement

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3