Affiliation:
1. School of Materials and Energy, University of Electronic Science and Technology, Chengdu 611731, China
2. School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
Abstract
As the capacity of lithium-ion batteries (LIBs) with commercial graphite anodes is gradually approaching the theoretical capacity of carbon, the development of silicon-based anodes, with higher energy density, has attracted great attention. However, the large volume variation during its lithiation/de-lithiation tends to lead to capacity decay and poor cycling performance. While rationally designed silicon/carbon (Si/C) anodes can exhibit higher specific capacity by virtue of silicon and high electrical conductivity and volume expansion suppression by virtue of carbon, they still show poor cycling performance with low initial coulombic efficiency. This review focuses on three strategies for structural design and optimization of Si/C anodes, i.e., carbon-coated structure, embedded structure and hollow structure, based on the recent researches into Si/Canodes and provides deeper insights into the problems that remain to be addressed.
Funder
National Science and Technology Major Project
Department of Science and Technology of Sichuan Province
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献