Formulation and Characterization of a Composite Coating Formulation Based on Acrylic Foam and Cork Granules

Author:

Monteiro Sandra,Ferreira Nuno,Paiva DianaORCID,Silva Susana P.ORCID,Martins Jorge,Carvalho Luísa H.,Magalhães Fernão D.ORCID

Abstract

Cork, the bark of Quercus suber L., in addition to presenting several notable physical-mechanical properties, possesses a distinctive look and feel that make it attractive for interior surfaces, such as in furniture, wall paneling, or flooring. This work envisaged the development of a coating based on cork granules, a subproduct from the wine stopper industry, capable of creating a smooth surface similar to natural cork. In order to avoid the high rugosity that characterizes surfaces coated with paints that incorporate cork granules, a new solution was developed, based on a foamed acrylic binder, applied by knife coating. The foam formulation was successfully optimized, using appropriate additives and resorting to mechanical agitation to promote the generation of air bubbles. The addition of cork granules did not hinder foam stability, and the final coating displayed the intended visual and sensory characteristics. Dynamic Mechanical Analysis was performed on the pristine acrylic foam and on the composite foam showed a stiffening effect associated with the presence of cork granules, and a thermal transition centered at around −10 °C, associated with the acrylic binder’s glass transition. The surface has hardness slightly lower than cork, depending on the amount of particles incorporated. Pull-off testing consistently resulted in substrate failure, indicating that the coating’s cohesion and adhesion are excellent. The developed coating showed to have the intended functionality while being easily applicable on flat panel surfaces. The fact that a foam is used as a binder system allows for a smooth and soft surface, having excellent opacity with minimal usage of cork.

Funder

Fundação para a Ciência e Tecnologia

FEDER + POCI

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3