Icariin-Functionalized Coating on TiO2 Nanotubes Surface to Improve Osteoblast Activity In Vitro and Osteogenesis Ability In Vivo

Author:

Ma AoboORCID,Shang Haiyan,Song Yunjia,Chen Bo,You Yapeng,Han Wen,Zhang Xu,Zhang Wenyi,Li Ying,Li Changyi

Abstract

Surface modification of titanium is encouraged to facilitate early osseointegration in dental and orthopedic fields. Icariin is the main active constituents of Herba Epimedii, which has good bone-promoting ability. We established an icariin-functionalized coating composed of icariin and poly (lactic-co-glycolic acid) (PLGA) on TiO2 nanotubes surface (NT-ICA-PLGA) to promote osteoblast cell activity and early osseointegration. Surface topography, wettability and drug release pattern of the established NT-ICA-PLGA surface were characterized by scanning electron microscopy (SEM), contact angle test and drug release test. MC3T3-E1 osteoblast cell activity tests were performed using SEM, immunofluorescent staining, cell counting kit-8 and alkaline phosphatase assays. The osteogenic effects of different surfaces were observed using a rat model. Surface characterization proved the successful fabrication of the icariin-functionalized coating on the TiO2 nanotube structure, with increased wettability. The NT-ICA-PLGA substrate showed sustained release of icariin until two weeks. Osteoblast cells grown on the NT-ICA-PLGA substrate displayed improved cell adhesion, proliferation and differentiation ability than the control Ti surface. The in vivo experiment also revealed superior bone forming ability on the NT-ICA-PLGA surface, compared to the pure Ti control. These results imply that the developed NT-ICA-PLGA substrate has a promising future use as functionalized coating for implant surface modification.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3