Abstract
A new framework for a nanocrystalline coating system is established and prepared to study the oxidation behavior with a significant difference in elemental composition. K38 superalloy is selected as a substrate alloy and the composition of the 2nd-generation single-crystal superalloy Rene N5 is used as the sputtered nanocrystalline coating. The oxidation behavior of the newly designed nanocrystalline coating is comparatively studied with the original K38 coating and its substrate alloy at 1050 °C for 500 h. Moreover, microstructure evolution on the interface is used for studying the influence of element interdiffusion behavior on the substrate alloy. Results show that the nanocrystalline coatings increase the oxidation performance of alloys at 1050 °C for 100 h. The sputtered SN-N5 nanocrystalline coating exhibits the best oxidation resistance among the three groups of specimens for 500 h. Interdiffusion occurred and is observed on the SN-N5 coating after long-term oxidation. However, no topologically close-packed phases participated in the substrate alloy.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献