Characterization of Wear and Corrosion Resistance of Stellite 6 Laser Surfaced Alloyed (LSA) with Rhenium

Author:

Smolina IrinaORCID,Kobiela KarolORCID

Abstract

This paper presents the method of preparation and study results of the Stellite 6 laser surface alloyed (LSA) with rhenium using na LDF diode laser (4000 W). During this process, a rhenium powder was introduced onto the surface of the Co-based alloy. The possibility of improving wear and corrosion resistance properties is interesting and worth investigating. The selected process parameters: the laser power of 900 W, powder feed rate in the range 1.92–3.83 g/min, and necessarily preheating of the substrate up to 200 °C—allowing to obtain the LSA layers on the Stellite 6 substrate. Depending on the process parameters, it is possible to modify the substrate’s surface layer in terms of rhenium concentration and geometrical characteristics of the laser tracks. It was found that undissolved particles of rhenium in laser-alloyed layers have a non-significant effect on their hardness and abrasion resistance. The laser surface-alloyed corrosion potential is better than the corrosion potential of the Stellite 6 substrate, including reducing resistance to pitting corrosion with a high ability to repassivation.

Funder

Polish National Centre for Research and Development

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3