Influence of HNT-ZnO Nanofillers on the Performance of Epoxy Resin Composites for Marine Applications

Author:

Şomoghi Raluca12ORCID,Mihai Sonia1,Teodorescu George-Mihail2,Vuluga Zina2ORCID,Gabor Augusta Raluca2,Nicolae Cristian-Andi2,Trică Bogdan2ORCID,Vătău Daniel Mihai Stănescu2,Oancea Florin2,Stănciulescu Cătălin Marian3

Affiliation:

1. Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania

2. National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Street, No. 202, 6th District, 060021 Bucharest, Romania

3. Qwerty Development Macada-M Srl, Iancului Street, No. 29, 2nd District, 021716 Bucharest, Romania

Abstract

Epoxy resin was conjugated with halloysite nanotubes (HNT) and different types of ZnO nanoparticles (commercial ZnO and modified ZnO-ODTES) to obtain HNT-ZnO/epoxy resin composites. These ZnO nanoparticles (ZnO NPs) were utilized with the intention to enhance the interfacial bonding between the epoxy resin and the reinforcing agent (HNT). The properties of resulted epoxy resin composites were characterized by various methods such as FTIR-ATR, TGA, DSC, TEM-EDX, and Nanoindentation analyses. The thermal properties of the epoxy resin composites were enhanced to a greater extent by the addition of HNT-ZnO nanofillers. DSC testing proved that the modification in the glass transition temperature can be due to the physical bonding between the epoxy resin and filler (HNT and/or ZnO). It was seen that the epoxy resin modified with HNT and ZnO-ODTES has the highest resistance to scratching by having a good elastic recovery as well as high values for surface hardness (~187.6 MPa) and reduced modulus (2980 MPa). These findings can pave the way for the developing of ZnO-based marine coatings with improved properties.

Funder

Ministry of Research, Innovation, and Digitization through CCCDI—UEFISCDI

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3