Combined Processing of Micro Cutters Using a Beam of Fast Argon Atoms in Plasma

Author:

Metel AlexanderORCID,Melnik YuryORCID,Mustafaev EnverORCID,Minin Ilya,Pivkin PetrORCID

Abstract

We present a new method for coating deposition on micro cutters without an increase in their cutting edges radii caused by the deposition. For this purpose, the cutting edges are sharpened before the coating deposition with a concentrated beam of fast argon atoms. The sharpening decreases the initial radius and, hence, limits its value after the coating deposition. The concentrated beam of fast argon atoms is generated using an immersed in the gas discharge plasma concave grid under a negative high voltage. Ions accelerated from the plasma by the grid pass through the grid holes and are concentrated in the focal point of the grid. As a result of the charge exchange in the space charge sheaths of the grid, they are transformed into fast atoms. A uniform sputtering by the fast atoms of the micro-cutter surface reduces the radius of its cutting edge.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference69 articles.

1. Plasma- and Beam-Assisted Deposition Methods

2. Physical char-acteristics, structure and stress state of vacuum-arc TiN coating, deposition on the substrate when applying high-voltage pulse during the deposition;Sobol’;Probl. Atom. Sci. Technol.,2011

3. Bias voltage and incidence angle effects on the structure and properties of vacuum arc deposited TiN coatings

4. High‐rate magnetron sputtering

5. Vacuum arc deposition devices

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3