Antimicrobial Activities of Hydrophobically Modified Poly(Acrylate) Films and Their Complexes with Different Chain Length Cationic Surfactants

Author:

Gîfu Ioana Cătălina,Maxim Monica Elisabeta,Cinteza Ludmila Otilia,Popa Marcela,Aricov Ludmila,Leontieș Anca Ruxandra,Anastasescu Mihai,Anghel Dan-Florin,Ianchis Raluca,Ninciuleanu Claudia Mihaela,Burlacu Sabina Georgiana,Nistor Cristina Lavinia,Petcu CristianORCID

Abstract

Multilayer films from hydrophobically modified poly(acrylic acid) (HMPA) and their complexes with cationic surfactants were successfully prepared using the layer-by-layer (LbL) method. Alkyl trimethylammonium bromide derivatives with various lengths of the hydrophobic chain (C10–C18) were used to interact with the HMPA polymer, generating highly hydrophobic domains in the films and contributing to the antimicrobial properties of the prepared coating. The antimicrobial efficiency against common pathogens such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans was investigated in relationship with the morphology and composition of the thin films. The wettability and roughness of the multilayered systems were evaluated using atomic force microscopy (AFM) and contact angle measurements. The effects of the microbial exposure on the surface properties of the prepared films were investigated in order to assess the stability of the HMPA-deposited multilayers and the durability of the antimicrobial activity. The hydrophobically modified films exhibited antimicrobial activity against the studied pathogens. The best efficiency was registered in the case of S. aureus, which showed an inhibition of growth up to 100% after 2 h. C. albicans proved to be less sensitive to the effect of the multilayers deposited from HMPA–surfactant complexes. These results suggest that HMPA and HMPA–surfactant complex LbL multilayer films can be used as promising materials in antimicrobial surface coatings with increased resistance to pathogens during exposure.

Funder

POS-CCE O2.2.1 project INFRANANOCHEM

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3