Nanocellulose and Cellulose Making with Bio-Enzymes from Different Particle Sizes of Neosinocalamus Affinis

Author:

Zhao Jiaxin,Wu Xiaoxiao,Yuan Xushuo,Yang Xinjie,Guo HaiyangORCID,Yao Wentao,Ji Decai,Li Xiaoping,Zhang LianpengORCID

Abstract

Cellulose is one of the most abundant, widely distributed and abundant polysaccharides on earth, and is the most valuable natural renewable resource for human beings. In this study, three different particle sizes (250, 178, and 150 μm) of Neosinocalamus affinis cellulose were extracted from Neosinocalamus affinis powder using bio-enzyme digestion and prepared into nanocellulose (CNMs). The cellulose contents of 250, 178, and 150 μm particle sizes were 53.44%, 63.38%, and 74.08%, respectively; the crystallinity was 54.21%, 56.03% and 63.58%, respectively. The thermal stability of cellulose increased gradually with smaller particle sizes. The yields of CNMs for 250, 178, and 150 μm particle sizes were 14.27%, 15.44%, and 16.38%, respectively. The results showed that the Neosinocalamus affinis powder was successfully removed from lignin, hemicellulose, and impurities (pectin, resin, etc.) by the treatment of bio-enzyme A (ligninase:hemicellulose:pectinase = 1:1:1) combined with NH3·H2O and H2O2/CH3COOH. Extraction of cellulose from Neosinocalamus affinis using bio-enzyme A, the smaller the particle size of Neosinocalamus affinis powder, the more cellulose content extracted, the higher the crystallinity, the better the thermal stability, and the higher the purity. Subsequently, nanocellulose (CNMs) were prepared by using bio-enzyme B (cellulase:pectinase = 1:1). The CNMs prepared by bio-enzyme B showed a network structure and fibrous bundle shape. Therefore, the ones prepared in this study belong to cellulose nanofibrils (CNFs). This study provides a reference in the extraction of cellulose from bamboo using bio-enzymes and the preparation of nanocellulose. To a certain extent, the utilization of bamboo as a biomass material was improved.

Funder

Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Yunnan Fundamental Research Project

“High-level Talent Introduction Program” project of Yunnan Province

Innovation and Entrepreneurship Training Program for College Students in Yunnan Province

Start Up Funding of Southwest Forestry University

111 project

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3