Study on the Galvanic Corrosion between 13Cr Alloy Tubing and Downhole Tools of 9Cr and P110: Experimental Investigation and Numerical Simulation

Author:

Zang Chuanzhen12,Jiang Hanqiao1,Lu Zongyu2,Peng Xianbo3,Wang Jian2,Lian Zhanghua3

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China

2. Engineering Technology Research Institute, PetroChina Xinjiang Oilfield Company, Karamay 834000, China

3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

Abstract

The galvanic corrosion of oil and gas production string is related to wellbore integrity and production safety. In order to study the galvanic corrosion of an oil and gas well tubing assembly and maintain production safety, this paper studied the galvanic corrosion behavior between 13Cr alloy steel tubing and the downhole tools of 9Cr and P110 in formate annular fluid via experimental and numerical simulation methods. The chemical composition, HTHP corrosion tests and electrochemical measurement of the three materials were investigated to analyze the corrosion mechanism and electrochemical parameters. Then, a full-sized 3D galvanic corrosion model of 13Cr tubing and a 9Cr/P110 joint combination was established using COMSOL Multiphysics software based on the electrochemical test results. The mechanism and current variation law of the galvanic corrosion of different tubing materials are discussed and analyzed in the paper. The results revealed that the corrosion rates obtained based on the electrochemical test are as follows: P110 (0.072 mm/y) > 9Cr (0.033 mm/y) > 13Cr (0.0022 mm/y). The current densities of a combination of 13Cr tubing with a 9Cr joint and 13Cr tubing with a P110 joint vary dramatically: the current density of the 13Cr tubing–P110 joint reach 1.6 × 10−4 A/cm2, higher than the current density of the combination of 13Cr tubing and a 9Cr joint. The results of a 3D FEM analysis show that the 13Cr tube demonstrates obvious galvanic corrosion with 9Cr and P110 joints, which is consistent with the analysis results of the polarization curve. This study therefore explains the galvanic corrosion mechanism of different tubing materials and provides guidance for the safe use of tubing in the productive process.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3