Fatigue and Healing Properties of Low Environmental Impact Rubberized Bitumen for Asphalt Pavement

Author:

Subhy Ayad,

Abstract

The addition of recycled tyre rubber as a modifier to enhance the mechanical properties of bitumen has proven to provide asphalt mixtures with better mechanical performance. However the rubberised bitumen presents the limitation of requiring higher manufacturing and compaction temperatures. This could be solved by subjecting the tyre rubber to sort of pre-treatments such as: Adding warm-mix additives and/or using partial devulcanisation. These solutions have the potential of lowering the overall environmental impact of the asphalt pavement, however it is still not clear whether these can be detrimental for the rubberized asphalt binder mechanical properties. This paper investigates the effect on fatigue and healing properties of rubberized bitumen blended with pre-treated crumb rubber. An innovative combined fatigue and healing analysis will be presented and used to compare the several rubberised binders with a neat bitumen. The analysis consists in conducting time sweep tests by means of dynamic shear rheometer, by applying repeated cycles of stress or strain loading at selected temperatures and loading frequency. The healing potential of binders was evaluated by introducing short rest periods after a certain number of load pulses. At last, the unique energy parameter obtained using the Ratio of Dissipated Energy Change approach, was applied to obtain a unique index that could provide combined information for both fatigue binder damage and healing phenomenon. The results showed that the analysed rubberised bitumens show having better fatigue and healing performance when compared to the straight-run bitumen.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3