Influence of Reaction pH towards the Physicochemical Characteristics of Phosphorylated Polyvinyl Alcohol-Aluminum Phosphate Nanocomposite

Author:

Mohamed Saat Asmalina,Kamil Md Salim,Hamizi Nor Aliya,Badruddin Irfan AnjumORCID,Ghazali Nadiah,Sagadevan Suresh,Kamangar SarfarazORCID,Khan T. M. YunusORCID,Johan Mohd Rafie

Abstract

The present study deals with the formation of a phosphorylated polyvinyl alcohol (PPVA)-Aluminum Phosphate (AlPO4) nanocomposite, changing the pH solution under the two-step process involving the phosphorylation of polyvinyl alcohol (PVA) followed by the conjugation with AlPO4. The composite was formed by varying the pH of the solution in the range of 7–12 and the reflected changes in the product’s morphology, crystallinity, surface nature, thermal stability, etc. were recorded using FESEM, XRD, FTIR, UV-Vis spectroscopy, TGA, etc. From the analysis, it was found that the particles formed with two different sizes of the probed pH, and at pH 10 they were homogeneously distributed. In addition, the morphology of the PPVA-AlPO4 composite also seems to be altered with respect to the pH and this is due to the differences in the amount of H+ and OH− anions. Thus, from the overall analysis, it can be indicated that pH 10 needs to be maintained for the formation of a spherical shape and uniformly distributed PPVA-AlPO4 nanocomposite.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3