An Experimental Study on Biochar/Polypyrrole Coating for Blade Anti-Icing of Wind Turbines

Author:

Li Xiaoheng1,Li Xiaojuan1,Mu Zhongqiu1ORCID,Li Yan12,Feng Fang23ORCID

Affiliation:

1. College of Engineering, Northeast Agricultural University, Harbin 150030, China

2. Key Laboratory of Icing and Anti/De-Icing, China Aerodynamics Research and Development Center, Mianyang 621000, China

3. College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China

Abstract

Wind turbines operating in cold regions are prone to freezing in winter, which can affect their performance and safety. To resolve this situation, the development of blade anti-icing technology has attracted widespread attention. In this study, a type of biochar/polypyrrole coating was obtained through synthesis on the surface of biochar. After characterization, it was found that the porous structure, irregular dents, and bumps on the surface of biochar/polypyrrole material contributed to the formation of a nanoscale roughness structure with a typical super-hydrophobic nanostructure. Additionally, it had a sufficient surface area. The wetting characteristics of the coating were analyzed with the assistance of a contact angle measurement instrument. The contact angle of the coating was determined as 151°, which indicates the excellent hydrophobic properties of the coating. Icing wind tunnel tests were carried out to evaluate the anti-icing effect of biochar coating and biochar/polypyrrole coating at different ambient temperatures and wind speeds. Compared with uncoated leaves, the icing area of biochar/polypyrrole coating was reduced. Additionally, the anti-icing effect of biochar/polypyrrole coating was most significant. This study provides a practical reference for the research of anti-icing coating on wind turbine blades.

Funder

National Natural Science Foundation of China

Open Fund of Key Laboratory of Icingand An-Ti/De-Icing, China Aerodynamics Research and Development Center

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing Versatile Superhydrophilic Structures via an Alginate-Based Hydrophilic Plasticene;Micromachines;2023-04-28

2. Green Materials in Wind Turbines;Reference Module in Materials Science and Materials Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3