Graphene Oxide Decorated with Titanium Nanoparticles to Reinforce the Anti-Corrosion Performance of Epoxy Coating

Author:

Yuan Heng,Qi FugangORCID,Zhao Nie,Wan Pengying,Zhang Biao,Xiong Hailong,Liao Bin,Ouyang Xiaoping

Abstract

Graphene oxide–titanium (GO-Ti) composite materials were fabricated using GO as a precursor and then anchoring nano titanium (Nano-Ti) particles on GO sheets with the help of a silane coupling agent. Then, the coating samples were prepared by dispersing GO, Nano-Ti particles, and GO-Ti in an epoxy resin at a low weight fraction of 1 wt %. The GO-Ti composites were investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The dispersibility and anti-corrosion mechanism of the coatings were studied by sedimentation experiments, electrochemical impedance spectroscopy (EIS), SEM, and salt spray tests. The mechanical properties of the coatings were analyzed by friction and wear tests. The results showed that the Nano-Ti particles were successfully loaded on the GO surface by chemical bonds, which made GO-Ti composites exhibit better dispersibility in the epoxy than GO. Compared with Nano-Ti particles and GO, the GO-Ti composite exhibited significant advantages in improving the corrosion resistance of epoxy coatings at the same contents, which was attributed to the excellent dispersibility, inherent corrosion resistance, and sheet structure. Among the different proportions of composite materials, the GO-Ti (2:1) material exhibited the best dispersibility and corrosion resistance. In addition, the composite material also greatly improved the wear resistance of the coating.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3