Abstract
The thermogravimetric analysis on TaC, HfC, and their solid solutions has been carried out in air up to 1400 °C. Three solid solution compositions have been chosen: 80TaC-20 vol % HfC (T80H20), 50TaC-50 vol % HfC (T50H50), and 20TaC-80 vol % HfC (T20H80), in addition to pure TaC and HfC. Solid solutions exhibit better oxidation resistance than the pure carbides. The onset of oxidation is delayed in solid solutions from 750 °C for pure TaC, to 940 °C for the T50H50 sample. Moreover, T50H50 samples display the highest resistance to oxidation with the retention of the initial carbides. The oxide scale formed on the T50H50 sample displays mechanical integrity to prevent the oxidation of the underlying carbide solid solution. The improved oxidation resistance of the solid solution is attributed to the reaction between Ta2O5 and HfC, which stabilizes the volume changes induced by the formation of Ta2O5 and diminishes the generation of gaseous products. Also, the formation of solid solutions disturbs the atomic arrangement inside the lattice, which delays the reaction between Ta and O. Both of these mechanisms lead to the improved oxidation resistances of TaC-HfC solid solutions.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Reference23 articles.
1. Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications;Fahrenholtz,2014
2. Transition Metal Carbides and Nitrides;Louis,1971
3. Materials for Ultrahigh Temperature Structural Applications;Upadhya;Am. Ceram. Soc. Bull.,1997
4. Handbook of Refractory Carbides and Nitrides;Pierson,1996
5. Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献