Optimization of Electrical Properties of Nanocrystallized Na3M2(PO4)2F3 NASICON-like Glasses (M = V, Ti, Fe)

Author:

Nowagiel Maciej1ORCID,Hul Anton1ORCID,Kazakevicius Edvardas2ORCID,Kežionis Algimantas2ORCID,Garbarczyk Jerzy E.1ORCID,Pietrzak Tomasz K.1ORCID

Affiliation:

1. Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

2. Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania

Abstract

Recently, an interest in NASICON-type materials revived, as they are considered potential cathode materials in sodium–ion batteries used in large-scale energy storage. We applied a facile technique of thermal nanocrystallization of glassy analogs of these compounds to enhance their electrical parameters. Six nanomaterials of the Na3M2(PO4)2F3 (M = V, Ti, Fe) system were studied. Samples with nominal compositions of Na3V2(PO4)2F3, Na3Ti2(PO4)2F3, Na3Fe2(PO4)2F3, Na3TiV(PO4)2F3, Na3FeV(PO4)2F3 and Na3FeTi(PO4)2F3 have been synthesized as glasses using the melt-quenching method. X-ray diffraction measurements were conducted for as-synthesized samples and after heating at elevated temperatures to investigate the structure. Extensive impedance measurements allowed us to optimize the nanocrystallization process to enhance the electrical conductivity of cathode nanomaterials. Such a procedure resulted in samples with the conductivity at room temperature ranging from 1×10−9 up to 8×10−5 S/cm. We carried out in situ impedance spectroscopy measurements (in an ultra-high-frequency range up to 10 GHz) and compared them with thermal events observed in differential thermal analysis studies.

Funder

POB Energy of Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference25 articles.

1. International Renewable Energy Agency (2022). World Energy Transitions Outlook 2022: 1.5 °C Pathway, International Renewable Energy Agency.

2. Challenges for Rechargeable Li Batteries;Goodenough;Chem. Mater.,2010

3. Li-ion battery materials: Present and future;Nitta;Mater. Today,2015

4. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges;Canepa;Chem. Rev.,2017

5. Sodium-ion batteries: Present and future;Hwang;Chem. Soc. Rev.,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3