Thermal Case Study of Cilia Actuated Transport of Radiated Blood-Based Ternary Nanofluid under the Action of Tilted Magnetic Field

Author:

Saleem NajmaORCID,Ashraf Tahreem,Daqqa Ibtisam,Munawar SufianORCID,Idrees NazeranORCID,Afzal FarkhandaORCID,Afzal Deeba

Abstract

Micro/nanoscale fabricated devices have widely been used in modern technology and bioengineering as they offer excellent heat transfer. Removal of excess heat, coolant selection, rapid mixing, and handling proportion of colloidal metallic nanogranules in the base fluid are the main challenges in micro/nanofluidic systems. To address these problems, the primary motivation of the intended mathematical flow problem is to investigate the thermal and flow aspects of blood-based ternary nanofluid in the presence of inclined magnetic field and thermal radiations through a microfluidic pump with elastic walls. Further, the pump inner surface is smeared with fabricated cilia. The embedded cilia blow in coordination to start metachronal travelling waves along the pump wall that assist homogenous mixing and manipulation. The entire analysis is conducted in moving frame and simplified under lubrication and Rosseland approximations. Numerical solution of various flow and thermal entities are computed via the shooting method and plotted for different values of the parameters of interest. A comparative glimpse allows us to conclude that the trimetallic blood-based nanofluid exhibits elevated heat transfer rate by 12–18%, bi-metallic by about 11–12%, and mono nanofluid by about 6% compared to the conventional blood model. The study also determines that the prolonged cilia commence augmentation in flowrate and pressure-gradient around the pump deep portion. Furthermore, the radiated ternary liquid under fragile magnetic field effects may contribute to the cooling process by eliminating unnecessary heat from the system. It is also noticed that around the ciliated wall, the heat transfer irreversibility effects are appreciable over the fluid frictional irreversibility.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3