The Effect of Structural Phase Transitions on Electronic and Optical Properties of CsPbI3 Pure Inorganic Perovskites

Author:

Syah RahmadORCID,Davarpanah AfshinORCID,Nasution Mahyuddin K. M.ORCID,Wali Qamar,Ramdan Dadan,Albaqami Munirah D.,Ouladsmane MohamedORCID,Noori Saja Mohammed

Abstract

Hybrid inorganic perovskites (HIPs) have been developed in recent years as new high-efficiency semiconductors with a wide range of uses in various optoelectronic applications such as solar cells and light-emitting diodes (LEDs). In this work, we used a first-principles theoretical study to investigate the effects of phase transition on the electronic and optical properties of CsPbI3 pure inorganic perovskites. The results showed that at temperatures over 300 °C, the structure of CsPbI3 exhibits a cube phase (pm3m) with no tilt of PbI6 octahedra (distortion index = 0 and bond angle variance = 0). As the temperature decreases (approximately to room temperature), the PbI6 octahedra is tilted, and the distortion index and bond angle variance increase. Around room temperature, the CsPbI3 structure enters an orthorhombic phase with two tilts PbI6 octahedra. It was found that changing the halogens in all structures reduces the volume of PbI6 octahedra. The tilted PbI6 octahedra causes the distribution of interactions to vary drastically, which leads to a change in band gap energy. This is the main reason for the red and blue shifts in the absorption spectrum of CsPbI3. In general, it can be said that the origin of all changes in the structural, electronic, and optical properties of HIPs is the changes in the volume, orientation, and distortion index of PbI6 octahedra.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3